第四单元 分数的意义和性质
(一)意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。
(二)单位“1”:一个整体可以用自然数1来表示,通常把它叫做单位“1”。(也就是把什么平均分什么就是单位“1”。)
(三)分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。如 的分数单位是 。
(四)分数与除法
A÷B=(B≠0) 4÷5=
(五)真分数和假分数
1、真分数:分子比分母小的分数叫真分数。
真分数<1。
2、假分数:分子比分母大或分子和分母相等的分数叫假分数。假分数≧1
3、带分数:略
(六)假分数与整数、带分数的互化
1、假分数化为整数或带分数,用分子÷分母,商作为整数,余数作为分子, 如:
=10÷5=2 =21÷5=4
2、整数化为假分数,用整数乘以分母得分子 如:
2=2×4=8 (8作分子)
3、带分数化为假分数,用整数乘以分母加分子,得数就是假分数的分子,分母不变。如:
5 =5×5+1=26
4、1等于任何分子和分母相同的分数。如:
1= = = = =…= =…
(七)分数的基本性质:
分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。
(八)求最大公因数和最小公倍数
用12和16来举例
1、 求法一:(列举求同法)
最大公因数的求法:
12的因数有:1、12、2、6、3、4
16的因数有:1、16、2、8、4
最大公因数是4
最小公倍数的求法:
12的倍数有:12、24、36、48、…
16的倍数有:16、32、48、…
最小公倍数是48
2、求法二:(分解质因数法)
12=2×2×3
16=2×2×2×2
最大公因数是:2×2=4 (相同乘)
最小公倍数是:2×2 × 3×2×2= 48
(相同乘× 不同乘)
如果两数是倍数关系时,那么较小的数就是它们的最大公因数,较大的数就是它们的最小公倍数。
如果两数互质时,那么1就是它们的最大公因数,它们的积就是它们的最小公倍数。
所有的公因数都是最大公因数的因数,最大公因数是它们的倍数。
所有的公倍数都是最小公倍数的倍数,最小公倍数是它们的因数。
(九)互质数:公因数只有1的两个数,叫做互质数。两个质数的互质数:5和7
两个合数的互质数:8和9 一质一合的互质数:7和8
两数互质的特殊情况:
1、1和任何自然数互质;2、相邻两个自然数互质; 3、两个质数一定互质;
4、2和所有奇数互质; 5、质数与比它小的合数互质;
(十)约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。如:
=
(十一)通分:把异分母分数分别化成和原来相等的同分母分数,叫做通分。如:
和可以化成 和
(十二)分数和小数的互化
1、小数化为分数 数小数位数。一位小数,分母是10;两位小数,分母是100…… 如:
0.3=0.03=0.003=
2、分数化为小数:
方法一:把分数化为分母是10、100、1000…… 如: =0.3 = =0.6 = =0.25
方法二:用分子÷分母 如:
=3÷4=0.75
3、带分数化为小数:
先把整数后的分数化为小数,再加上整数 如:
2 =2+0.3=2.3
4、最简分数的分母只含有质因数2和5,这个分数一定能化成有限小数。
5、分数化简包括两步:一是约分;二是把假分数化成整数或带分数。
=0.5 =0.25 =0.75 =0.2 =0.4 =0.6 =0.8
=0.125 =0.375 =0.625 =0.875 =0.05 =0.04
第五单元 分数的加法和减法
(一)同分母分数相加减。
方法:分母不变,分子相加减,结果再约分。如:
+ = =
(二)异分母分数相加减。
方法:分母不同,先通分,把分母变相同,再加减,结果要约分。如:
+ = + = =
(三)分数加减混合运算 和整数一样
(四)带分数加减法: 带分数相加减,整数部分和分数部分分别相加减,再把所得的结果合并起来。
第六单元 统计
(一)众数:一组数据中出现次数最多的一个数或几个数,就是这组数据的众数。
(二)、一组数据的一般水平:
1、当一组数据中没有偏大偏小的数,也没有个别数据多次出现,用平均数表示一般水平。
2、当一组数据中有偏大或偏小的数时,用中位数来表示一般水平。
3、当一组数据中有个别数据多次出现,就用众数来表示一般水平。
中位数的求法:
1、按大小排列。
2、如果数据的个数是单数,那么最中间的那个数就是中位数;
如果数据的个数是双数,那么最中间的那两个数的平均数就是中位数。
平均数的求法:总数÷总份数=平均数
(三)统计图:我们学过——条形统计图、折线统计图。
优点:条形统计图能形象地反映出数量的多少。
折线统计图不仅能表示出数量的多少,还能反映出数量的变化情况。
(四)打电话:规律——人人不闲着,每人都在传。
第七单元 数学广角
方法:把所有物品尽可能平均地分成3份,用的次数最少。
数目与测试的次数的关系:2~3个物体,保证能找出次品需要测的次数是1次
4~9个物体,保证能找出次品需要测的次数是2次
10~27个物体,保证能找出次品需要测的次数是3次
28~81个物体,保证能找出次品需要测的次数是4次
82~243个物体,保证能找出次品需要测的次数是5次
244~729个物体,保证能找出次品需要测的次数是6次
【人教版五年级数学下册综合复习计划】相关文章:
本文来源:http://www.010zaixian.com/shiyongwen/3062443.htm