欢迎来到010在线作文网!

《2.3 变量间的相关关系》测试题及答案(2)

试题 时间:2021-08-31 手机版

  解:如图,由公式可求得A关于直线x-2y=0的对称点

  A′(5,0),B关于y轴对称点B′为(-1,5),直线A′B′的方程为5x+6y-25=0

  `C(0, )

  `直线BC的方程为:5x-6y+25=0

  二、曲线关于已知点或已知直线的对称曲线问题

  求已知曲线F(x,y)=0关于已知点或已知直线的对称曲线方程时,只须将曲线F(x,y)=O上任意一点(x,y)关于已知点或已知直线的对称点的坐标替换方程F(x,y)=0中相应的作称即得,由此我们得出以下结论。

  1、曲线F(x,y)=0关于点(a,b)的对称曲线的方程是F(2a-x,2b-y)=0

  2、曲线F(x,y)=0关于直线Ax+By+C=0对称的曲线方程是F(x-(Ax+By+C),y-(Ax+By+C))=0

  特别地,曲线F(x,y)=0关于

  (1)x轴和y轴对称的曲线方程分别是F(x,-y)和F(-x,y)=0

  (2)关于直线x=a和y=a对称的曲线方程分别是F(2a-x,y)=0和F(x,2a-y)=0

  (3)关于直线y=x和y=-x对称的曲线方程分别是F(y,x)=0和F(-y,-x)=0

  除此以外还有以下两个结论:对函数y=f(x)的图象而言,去掉y轴左边图象,保留y轴右边的图象,并作关于y轴的对称图象得到y=f(x)的图象;保留x轴上方图象,将x轴下方图象翻折上去得到y=f(x)的图象。

  例2(全国高考试题)设曲线C的方程是y=x3-x。将C沿x轴y轴正向分别平行移动t,s单位长度后得曲线C1:

  1)写出曲线C1的方程

  2)证明曲线C与C1关于点A( , )对称。

  (1)解 知C1的方程为y=(x-t)3-(x-t)+s

  (2)证明 在曲线C上任取一点B(a,b),设B1(a1,b1)是B关于A的对称点,由a=t-a1,b=s-b1,代入C的方程得:

  s-b1=(t-a1)3-(t-a1)

  `b1=(a1-t)3-(a1-t)+s

  `B1(a1,b1)满足C1的方程

  `B1在曲线C1上,反之易证在曲线C1上的点关于点A的对称点在曲线C上

  `曲线C和C1关于a对称

  我们用前面的结论来证:点P(x,y)关于A的对称点为P1(t-x,s-y),为了求得C关于A的`对称曲线我们将其坐标代入C的方程,得:s-y=(t-x)3-(t-x)

  `y=(x-t)3-(x-t)+s

  此即为C1的方程,`C关于A的对称曲线即为C1。

  三、曲线本身的对称问题

  曲线F(x,y)=0为(中心或轴)对称曲线的充要条件是曲线F(x,y)=0上任意一点P(x,y)(关于对称中心或对称轴)的对称点的坐标替换曲线方程中相应的坐标后方程不变。

  例如抛物线y2=-8x上任一点p(x,y)与x轴即y=0的对称点p′(x,-y),其坐标也满足方程y2=-8x,`y2=-8x关于x轴对称。

  例3 方程xy2-x2y=2x所表示的曲线:

  A、关于y轴对称 B、关于直线x+y=0对称

  C、关于原点对称 D、关于直线x-y=0对称

  解:在方程中以-x换x,同时以-y换y得

  (-x)(-y)2-(-x)2(-y)=-2x,即xy2-x2y=2x方程不变

  `曲线关于原点对称。

  函数图象本身关于直线和点的对称问题我们有如下几个重要结论:

  1、函数f(x)定义线为R,a为常数,若对任意x∈R,均有f(a+x)=f(a-x),则y=f(x)的图象关于x=a对称。

  这是因为a+x和a-x这两点分别列于a的左右两边并关于a对称,且其函数值相等,说明这两点关于直线x=a对称,由x的任意性可得结论。

  例如对于f(x)若t∈R均有f(2+t)=f(2-t)则f(x)图象关于x=2对称。若将条件改为f(1+t)=f(3-t)或f(t)=f(4-t)结论又如何呢?第一式中令t=1+m则得f(2+m)=f(2-m);第二式中令t=2+m,也得f(2+m)=f(2-m),所以仍有同样结论即关于x=2对称,由此我们得出以下的更一般的结论:

  2、函数f(x)定义域为R,a、b为常数,若对任意x∈R均有f(a+x)=f(b-x),则其图象关于直线x= 对称。

  我们再来探讨以下问题:若将条件改为f(2+t)=-f(2-t)结论又如何呢?试想如果2改成0的话得f(t)=-f(t)这是奇函数,图象关于(0,0)成中心对称,现在是f(2+t)=-f(2-t)造成了平移,由此我们猜想,图象关于M(2,0)成中心对称。如图,取点A(2+t,f(2+t))其关于M(2,0)的对称点为A′(2-x,-f(2+x))

  ∵-f(2+X)=f(2-x)`A′的坐标为(2-x,f(2-x))显然在图象上

  `图象关于M(2,0)成中心对称。

  若将条件改为f(x)=-f(4-x)结论一样,推广至一般可得以下重要结论:

  3、f(X)定义域为R,a、b为常数,若对任意x∈R均有f(a+x)=-f(b-x),则其图象关于点M(,0)成中心对称。

  以上是小编为大家整理的“浅析高中数学对称问题分类”全部内容,更多相关内容请点击:

  > >

  3.1.1 直线的倾斜角和斜率(教学设计)

  教学目标:

  知识与技能

  正确理解直线的倾斜角和斜率的概念.

  理解直线的倾斜角的唯一性.

  理解直线的斜率的存在性.

  斜率公式的推导过程,掌握过两点的直线的斜率公式.

  情感态度与价值观

  (1) 通过直线的倾斜角概念的引入学习和直线倾斜角与斜率关系的揭示,培养学生观察、探索能力,运用数学语言表达能力,数学交流与评价能力.

  (2) 通过斜率概念的建立和斜率公式的推导,帮助学生进一步理解数形结合思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.

  重点与难点: 直线的倾斜角、斜率的概念和公式.

  教学用具:计算机

  教学方法:启发、引导、讨论.

  教学过程:

  (一)直线的倾斜角的概念

  我们知道, 经过两点有且只有(确定)一条直线. 那么, 经过一点P的直线l的位置能确定吗? 如图, 过一点P可以作无数多条直线a,b,c, …易见,答案是否定的.这些直线有什么联系呢?

  (1)它们都经过点P. (2)它们的‘倾斜程度’不同. 怎样描述这种‘倾斜程度’的不同?

  引入直线的倾斜角的概念:

  当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α= 0°.

  问: 倾斜角α的取值范围是什么? 0°≤α<180°.

  当直线l与x轴垂直时, α= 90°.

  因为平面直角坐标系内的每一条直线都有确定的倾斜程度, 引入直线的倾斜角之后, 我们就可以用倾斜角α来表示平面直角坐标系内的每一条直线的倾斜程度.

  如图, 直线a∥b∥c, 那么它们的倾斜角α相等吗? 答案是肯定的.所以一个倾斜角α不能确定一条直线.确定平面直角坐标系内的一条直线位置的几何要素: 一个点P和一个倾斜角α.


本文来源http://www.010zaixian.com/shiti/2573700.htm
以上内容来自互联网,请自行判断内容的正确性。若本站收录的信息无意侵犯了贵司版权,请给我们来信(zaixianzuowenhezi@gmail.com),我们会及时处理和回复,谢谢.